High resolution heteronuclear correlation NMR spectroscopy of an antimicrobial peptide in aligned lipid bilayers: peptide-water interactions at the water-bilayer interface.

نویسندگان

  • Riqiang Fu
  • Eric D Gordon
  • Daniel J Hibbard
  • Myriam Cotten
چکیده

High-resolution two-dimensional (2D) (1)H-(15)N heteronuclear correlation (HETCOR) spectroscopy has been used to characterize the structure and dynamics of (15)N-backbone labeled antimicrobial piscidin 1 (p1) oriented in "native-like" hydrated lipid bilayers. Piscidin belongs to a family of amphipatic cationic antimicrobial peptides, which are membrane-active and have broad spectrum antimicrobial activity on bacteria. When the (1)H chemical shifts are encoded by the (1)H-(15)N dipolar couplings, 2D dipolar-encoded HETCOR (i.e., de-HETCOR) solid-state NMR spectra yield high resolution (1)H and (15)N chemical shifts as well as (1)H-(15)N heteronuclear dipolar couplings. Several advantages of HETCOR and de-HETCOR techniques that emerge from our investigations could facilitate the atomic-level investigations of structure-function relationships in membrane-active peptides and membrane-bound species. First, the de-HETCOR NMR spectrum of a ten-site (15)N-labeled sample of p1 aligned in hydrated lipid bilayers can resolve resonances that are overlapped in the standard HETCOR spectrum. Second, the resolution in de-HETCOR spectra of p1 improves significantly at higher magnetic field due to an enhanced alignment that improves spectrum definition uniformly. Third, the HETCOR spectrum of (15)N-K(14) p1 oriented in hydrated lipid bilayers displays not only the expected crosscorrelation between the chemical shifts of bonded amide(1)H and (15)N spins but also a cross peak between the (1)H chemical shift from bulk water and the (15)N chemical shift from the labeled amide nitrogen. This information provides new insights into the intermolecular interactions of an amphipathic antimicrobial peptide optimized to partition at the water-bilayer interface and may have implications at the biological level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy.

The interaction of an arginine (Arg) residue with water in a transmembrane antimicrobial peptide, PG-1, is investigated by two-dimensional heteronuclear correlation (HETCOR), solid-state nuclear magnetic resonance (NMR) spectroscopy. Using (13)C and (15)N dipolar-edited (1)H-(15)N HETCOR experiments, we unambiguously assigned a water-guanidinium cross-peak that is distinct from intramolecular p...

متن کامل

High-field NMR studies of molecular recognition and structure-function relationships in antimicrobial piscidins at the water-lipid bilayer interface.

High magnetic field solid-state NMR was performed on amphipathic cationic antimicrobial peptides from fish to characterize their secondary structure and orientation in hydrated phospholipid bilayers. High-resolution distance and orientational restraints on 13C- and 15N-labeled amidated piscidins 1 and 3 provided site-specific information establishing alpha-helicity and an orientation parallel t...

متن کامل

Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy.

The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly...

متن کامل

High-resolution heteronuclear correlation spectroscopy in solid state NMR of aligned samples.

A new two-dimensional scheme is proposed for accurate measurements of high-resolution chemical shifts and heteronuclear dipolar couplings in NMR of aligned samples. Both the (1)H chemical shifts and the (1)H-(15)N dipolar couplings are evolved in the indirect dimension while the (15)N chemical shifts are detected. This heteronuclear correlation (HETCOR) spectroscopy yields high-resolution (1)H ...

متن کامل

Amphipathic antimicrobial piscidin in magnetically aligned lipid bilayers.

The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. (31)P NMR and double-resonance (1)H/(15)N NMR experiments performed between 25 °C and 61 °C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 31  شماره 

صفحات  -

تاریخ انتشار 2009